The regression forecast is based on the assumption of a model
consisting of a constant and a linear trend. |
||||||
The estimates for three different values of m are
shown together with the mean of the time series in the figure
below. The figure shows the estimate of the mean at each time
and not the forecast.
The estimate follows the trend line more closely
than the moving average or exponential smoothing methods. During
the times when the mean is constant, the regression estimate
is more variable than the moving average method.
|
||||||
Forecasting with Excel |
||||||
The Forecasting add-in implements the regression formulas. The example below shows the analysis provided by the add-in for the sample data in column B. The first 10 observations are indexed -9 through 0. Compared to the table above, the period indices are shifted by -10. | ||||||
The first ten observations provide
the startup values for the estimate. The constant and trend
estimates are shown in columens C and D. The Fore(1) column
(E) shows a forecast for one period into the future. The forecast
interval is in cell D3. The regression parameter m is
in cell C3. When the forecast interval is changed to a larger
number the numbers in the Fore column are shifted down. The Err(1) column (F) shows the error between the observation and the forecast. The standard deviation and Mean Average Deviation (MAD) are computed in cells F6 and F7 respectively. |
Home »
Mining Theory
» Regression
Regression
Posted by MINING ARCHIVE on Senin, 06 Agustus 2012
|
0 komentar:
Posting Komentar